Poisson CNN: Convolutional neural networks for the solution of the Poisson equation on a Cartesian mesh

Author:

Özbay Ali GirayhanORCID,Hamzehloo ArashORCID,Laizet SylvainORCID,Tzirakis Panagiotis,Rizos Georgios,Schuller Björn

Abstract

Abstract The Poisson equation is commonly encountered in engineering, for instance, in computational fluid dynamics (CFD) where it is needed to compute corrections to the pressure field to ensure the incompressibility of the velocity field. In the present work, we propose a novel fully convolutional neural network (CNN) architecture to infer the solution of the Poisson equation on a 2D Cartesian grid with different resolutions given the right-hand side term, arbitrary boundary conditions, and grid parameters. It provides unprecedented versatility for a CNN approach dealing with partial differential equations. The boundary conditions are handled using a novel approach by decomposing the original Poisson problem into a homogeneous Poisson problem plus four inhomogeneous Laplace subproblems. The model is trained using a novel loss function approximating the continuous $ {L}^p $ norm between the prediction and the target. Even when predicting on grids denser than previously encountered, our model demonstrates encouraging capacity to reproduce the correct solution profile. The proposed model, which outperforms well-known neural network models, can be included in a CFD solver to help with solving the Poisson equation. Analytical test cases indicate that our CNN architecture is capable of predicting the correct solution of a Poisson problem with mean percentage errors below 10%, an improvement by comparison to the first step of conventional iterative methods. Predictions from our model, used as the initial guess to iterative algorithms like Multigrid, can reduce the root mean square error after a single iteration by more than 90% compared to a zero initial guess.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,General Environmental Science

Reference41 articles.

1. Neural-network-based approximations for solving partial differential equations

2. Raissi, M (2018) Deep hidden physics models: Deep learning of nonlinear partial differential equations. The Journal of Machine Learning Research, 19(1), 932–955.

3. Tompson, J , Schlachter, K , Sprechmann, P and Perlin, K (2016) Accelerating eulerian fluid simulation with convolutional networks. ArXiv e-prints.

4. Ratios of Normal Variables and Ratios of Sums of Uniform Variables

5. Raissi, M , Perdikaris, P and Karniadakis, GE (2017a) Physics informed deep learning (part i): Data-driven solutions of nonlinear partial differential equations. arXiv preprint arXiv:1711.10561.

Cited by 28 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3