Soft X-ray continuum radiation from low-energy pinch discharges of hydrogen

Author:

MILLS R.,BOOKER R.,LU Y.

Abstract

AbstractUnder a study contracted by GEN3 Partners, spectra of high current pinch discharges in pure hydrogen and helium were recorded in the extreme ultraviolet radiation region at the Harvard Smithsonian Center for Astrophysics (CfA) in an attempt to reproduce experimental results published by BlackLight Power, Inc. (BLP) showing predicted continuum radiation due to hydrogen in the 10–30 nm region (Mills, R. L. and Lu, Y. 2010 Hydrino continuum transitions with cutoffs at 22.8 nm and 10.1 nm. Int. J. Hydrog. Energy35, 8446–8456, doi:10.1016?j.ijhydene.2010.05.098). Alternative explanations were considered to the claimed interpretation of the continuum radiation as being that emitted during transitions of H to lower-energy states (hydrinos). Continuum radiation was observed at CfA in the 10–30 nm region that matched BLP's results. Considering the low energy of 5.2 J per pulse, the observed radiation in the energy range of about 120–40 eV, reference experiments and analysis of plasma gases, cryofiltration to remove contaminants, and spectra of the electrode metal, no conventional explanation was found in the prior or present work to be plausible including contaminants, electrode metal emission, and Bremsstrahlung, ion recombination, molecular or molecular ion band radiation, and instrument artifacts involving radicals and energetic ions reacting at the charge-coupled device and H2 re-radiation at the detector chamber. Moreover, predicted selective extraordinarily high-kinetic energy H was observed by the corresponding Doppler broadening of the Balmer α line.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3