The simulation of plasma double-layer structures in two dimensions

Author:

Borovsky Joseph E.,Joyce Glenn

Abstract

Electrostatic plasma double layers are numerically simulated by means of a magnetized 2½-dimensional particle-in-cell method, periodic in one direction and bounded by reservoirs of Maxwellian plasma in the other. The investigation of planar double layers indicates that these one-dimensional potential structures are susceptible to periodic disruption by plasma instabilities. A slight increase in the double-layer thickness with an increase in its obliqueness to the magnetic field is observed. It is noted that weak magnetization results in the double-layer electric-field alignment of particles accelerated by these potential structures and that strong magnetization results in their magnetic-field alignment. Electron-beam-excited electrostatic electron cyclotron waves and ion-beam-driven electrostatic turbulence are present in the plasmas adjacent to the double layers. The numerical simulations of spatially periodic two-dimensional double layers also exhibit cyclical instability. A morphological invariance in two-dimensional double layers with respect to the degree of magnetization implies that the potential structures scale with Debye lengths rather than with gyroradii. Ion-beam-driven electrostatic turbulence and electron-beam-driven plasma waves are again detected. A simplified one-dimensional model of oblique plasma double layers, using water-bag velocity distribution functions, is presented in an appendix.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Reference19 articles.

1. Pekarek L. 1963 Proceedings of International Conference on Ionization Phenomena in Gases, Paris, vol. 3, p. 133.

2. On the nature of large auroral zone electric fields at 1-REaltitude

3. Borovsky J. E. 1982 Phys. Rev. Lett. (submitted).

4. An equipotential model for auroral arcs: The theory of two-dimensional Laminar electrostatic shocks

5. Fourth-order poisson solver for the simulation of bounded plasmas

Cited by 46 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3