Driven, dissipative, energy-conserving magnetohydrodynamic equilibria. Part 2. The screw pinch

Author:

Goodman Michael L.

Abstract

A cylindrically symmetric, electrically driven, dissipative, energy-conserving magnetohydrodynamic equilibrium model is considered. The high-magneticfield Braginskii ion thermal conductivity perpendicular to the local magnetic field and the complete electron resistivity tensor are included in an energy equation and in Ohm's law. The expressions for the resistivity tensor and thermal conductivity depend on number density, temperature, and the poloidal and axial (z-component) magnetic field, which are functions of radius that are obtained as part of the equilibrium solution. The model has plasma-confining solutions, by which is meant solutions characterized by the separation of the plasma into two concentric regions separated by a transition region that is an internal boundary layer. The inner region is the region of confined plasma, and the outer region is the region of unconfined plasma. The inner region has average values of temperature, pressure, and axial and poloidal current densities that are orders of magnitude larger than in the outer region. The temperature, axial current density and pressure gradient vary rapidly by orders of magnitude in the transition region. The number density, thermal conductivity and Dreicer electric field have a global minimum in the transition region, while the Hall resistivity, Alfvén speed, normalized charge separation, Debye length, (ωλ)ion and the radial electric field have global maxima in the transition region. As a result of the Hall and electron-pressure-gradient effects, the transition region is an electric dipole layer in which the normalized charge separation is localized and in which the radial electric field can be large. The model has an intrinsic value of β, about 13·3%, which must be exceeded in order that a plasma-confining solution exist. The model has an intrinsic length scale that, for plasma-confining solutions, is a measure of the thickness of the boundary-layer transition region. If appropriate boundary conditions are given at R = 0 then the equilibrium is uniquely determined. If appropriate boundary conditions are given at any outer boundary R = a then the equilibrium exhibits a bifurcation into two states, one of which exhibits plasma confinement and carries a larger axial current than the other, which is almost homogeneous and cannot confine a plasma. Exact expressions for the two values of the axial current in the bifurcation are derived. If the boundary conditions are given at R = a then a solution exists if and only if the constant driving electric field exceeds a critical value. An exact expression for this critical electric field is derived. It is conjectured that the bifurcation is associated with an electric-field-driven transition in a real plasma, between states with different rotation rates, energy dissipation rates and confinement properties. Such a transition may serve as a relatively simple example of the L—H mode transition observed in tokamaks.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 5 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3