Rayleigh Taylor instability of a viscous Hall plasma with magnetic field

Author:

Bhowmik G.

Abstract

The influence of finite Larmor frequency on the stability of a viscous, finitely conducting liquid in a downward gravitational field under the influence of a uniform magnetic field directed along or normal to gravity, is investigated. The solution in each case is shown to be characterized by a variational principle Based on the variational principle, an approximate solution is obtained for the stability of a layer of fluid of constant kinematic viscosity and an exponentia density distribution. It has been found that finite resistivity and finite Larmor frequency do not introduce any instabifity in a potentially stable configuration. However, for a potentially unstable configuration we find that, for an ideal Hal plasma, the results depend on the orientation of the magnetic field, though the instability persists for all wave-numbers in the presence of non-ideal (finite resistivity and viscosity) effects. For the field aligned with gravity, it is found that a potentially unstable field-free configuration is stabilized if the buoyancy number B ( = gβ/12 V2) is less than unity. For B > 1, the instability arises for wave-numbers exceeding a critical value, which decreases on allowing for Hall terms in the generalized Ohm's law, suggesting a destabilizing influence of finite Larmor frequency. For an ambient horizontal magnetic field, it is found that an ideal plasma is stable, even for B > 0, for perturbations confined to a cone about the magnetic field vector. The angle of the cone of stable propagation, however, decreases on account of finite Larmor frequency.

Publisher

Cambridge University Press (CUP)

Subject

Condensed Matter Physics

Cited by 15 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3