What Remains Now That the Fear Has Passed? Developmental Trajectory Analysis of COVID-19 Pandemic for Co-occurrences of Twitter, Google Trends, and Public Health Data

Author:

Rathke Benjamin Havis,Yu HanORCID,Huang Hong

Abstract

Abstract Objective: The rapid onset of coronavirus disease 2019 (COVID-19) created a complex virtual collective consciousness. Misinformation and polarization were hallmarks of the pandemic in the United States, highlighting the importance of studying public opinion online. Humans express their thoughts and feelings more openly than ever before on social media; co-occurrence of multiple data sources have become valuable for monitoring and understanding public sentimental preparedness and response to an event within our society. Methods: In this study, Twitter and Google Trends data were used as the co-occurrence data for the understanding of the dynamics of sentiment and interest during the COVID-19 pandemic in the United States from January 2020 to September 2021. Developmental trajectory analysis of Twitter sentiment was conducted using corpus linguistic techniques and word cloud mapping to reveal 8 positive and negative sentiments and emotions. Machine learning algorithms were used to implement the opinion mining how Twitter sentiment was related to Google Trends interest with historical COVID-19 public health data. Results: The sentiment analysis went beyond polarity to detect specific feelings and emotions during the pandemic. Conclusions: The discoveries on the behaviors of emotions at each stage of the pandemic were presented from the emotion detection when associated with the historical COVID-19 data and Google Trends data.

Publisher

Cambridge University Press (CUP)

Subject

Public Health, Environmental and Occupational Health

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3