Abstract
In this paper we obtain some ergodic properties and ergodic decompositions of a continuous-time, Borel right Markov process taking values in a locally compact and separable metric space. Initially, we assume that an invariant probability measure (IPM) μ exists for the process and, without making any further assumptions on the transition kernel, obtain some characterization results for the convergence of the expected occupation measure to a limit kernel. Under the same assumption, we present the so-called Yosida decomposition. Next, instead of assuming the existence of an IPM, we assume that the Markov process satisfies a certain condition, named theT'-condition. Under this condition it is shown that the Foster-Lyapunov criterion is necessary and sufficient for the existence of an IPM and that the process admits a Doeblin decomposition. Furthermore, it is shown that in this case the set of ergodic probability measures is countable and that every probability measure for the Markov process is nonsingular with respect to the transition kernel.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献
1. Irreducible decomposition for Markov processes;Stochastic Processes and their Applications;2021-10