Abstract
Take a sample of individuals in the fixed-size population model with exchangeable family sizes. Follow the ancestral lines for the sampled individuals backwards in time to observe the ancestral process. We describe a class of asymptotic structures for the ancestral process via a convergence criterion. One of the basic conditions of the criterion prevents simultaneous mergers of ancestral lines. Another key condition implies that the marginal distribution of the family size is attracted by an infinitely divisible distribution. If the latter is normal the coalescent allows only for pairwise mergers (Kingman's coalescent). Otherwise multiple mergers happen with positive probability.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
40 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献