Outcomes of epidemic models with general infection and removal rate functions at certain stopping times

Author:

Clancy Damian

Abstract

This paper aims to show how certain known martingales for epidemic models may be derived using general techniques from the theory of stochastic integration, and hence to extend the allowable infection and removal rate functions of the model as far as possible. Denoting by x, y the numbers of susceptible and infective individuals in the population, then we assume that new infections occur at rate β xy xy and infectives are removed at rate γ xy y, where the ratio β xy / γ xy can be written in the form q(x+y) / xp(x) for appropriate functions p,q. Under this condition, we find equations giving the distribution of the number of susceptibles remaining in the population at appropriately defined stopping times. Using results on Abel–Gontcharoff pseudopolynomials we also derive an expression for the expectation of any function of the number of susceptibles at these times, as well as considering certain integrals over the course of the epidemic. Finally, some simple examples are given to illustrate our results.

Publisher

Cambridge University Press (CUP)

Subject

Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Collective epidemics with asymptomatics and functional infection rates;Stochastics;2023-09-07

2. SIR epidemics driven by Feller processes;Journal of Applied Probability;2023-05-02

3. Final outcome probabilities for SIR epidemic model;Communications in Statistics - Theory and Methods;2016-03-30

4. Generality of endemic prevalence formulae;Mathematical Biosciences;2015-11

5. RISK MODELS IN INSURANCE AND EPIDEMICS: A BRIDGE THROUGH RANDOMIZED POLYNOMIALS;Probability in the Engineering and Informational Sciences;2015-03-23

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3