Channel and shoal development in a short tidal embayment: an idealized model study

Author:

ter BRAKE MIRIAM C.,SCHUTTELAARS HENK M.

Abstract

In many tidal embayments, complex patterns of channels and shoals are observed. To gain a better understanding of these features, an idealized model, that describes the interaction of water motion, sediment transport and bed evolution in a semi-enclosed, rectangular basin, is developed and analysed. To explain the initial formation of channels and shoals, two-dimensional perturbations superposed on a laterally uniform equilibrium bottom are studied. These perturbations evolve due to convergences of various residual suspended sediment fluxes: a diffusive flux, a flux related to the bed topography, an advective flux resulting from internally generated overtides and an advective flux due to externally prescribed overtides. For most combinations of these fluxes, perturbations start to grow if the bottom friction is strong enough. Their growth is mainly a result of convergences of diffusive and topographically induced sediment fluxes. Advective contributions due to internally generated overtides enhance this growth. If only diffusive sediment fluxes are considered, the underlying equilibrium is always unstable. This can be traced back to the depth dependence of the deposition parameter. Contrary to the results of previous idealized models, the channels and shoals always initiate in the shallow, landward areas. This is explained by the enhanced generation (compared to that in previous models) of frictional torques in shallow regions. The resulting initial channel–shoal formation compares well with results found in complex numerical model studies. The instability mechanism and the location of the initial formation of bottom patterns do not change qualitatively when varying parameters. Changes are mainly related to differences in the underlying equilibrium profile due to parameter variations.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

Reference27 articles.

1. On the drainage density of tidal networks

2. The effect of geometry and bottom friction on local bed forms in a tidal embayment

3. An idealized long-term morphodynamic model of a tidal embayment;Schuttelaars;Eur. J. Mech. B/Fluids,1996

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3