Breakdown of the shallow water equations due to growth of the horizontal vorticity

Author:

BRIDGES THOMAS J.,NEEDHAM DAVID J.

Abstract

In an oceanographic setting, the shallow water equations are an asymptotic approximation to the full Euler equations, in the limit ϵ =h0/L→ 0, withh0being the vertical length scale andLa horizontal length scale associated with the fluid layer. However, in arriving at the shallow water equations an additional key step in the derivation is the condition that at some reference time (e.g.t= 0) the thin-layer horizontal vorticity field is identically zero, which corresponds to the horizontal fluid velocity field being independent of the vertical coordinate,z, att= 0. With this condition in place, the ‘thin-layer equations’ reduce exactly to the shallow water equations. In this paper, we show that this exact condition may be unstable: small, even infinitesimal, perturbations of the thin-layer horizontal vorticity field can grow without bound. When the thin-layer horizontal vorticity grows to be of order 1, the shallow water equations are no longer asymptotically valid as a model for shallow water hydrodynamics, and the ‘thin-layer equations’ must be adopted in their place.

Publisher

Cambridge University Press (CUP)

Subject

Mechanical Engineering,Mechanics of Materials,Condensed Matter Physics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3