KMS states for generalized gauge actions on -algebras associated with self-similar sets

Author:

DE CASTRO GILLES G.ORCID

Abstract

AbstractGiven a self-similar set K defined from an iterated function system $\Gamma =(\gamma _{1},\ldots ,\gamma _{d})$ and a set of functions $H=\{h_{i}:K\to \mathbb {R}\}_{i=1}^{d}$ satisfying suitable conditions, we define a generalized gauge action on Kajiwara–Watatani algebras $\mathcal {O}_{\Gamma }$ and their Toeplitz extensions $\mathcal {T}_{\Gamma }$ . We then characterize the KMS states for this action. For each $\beta \in (0,\infty )$ , there is a Ruelle operator $\mathcal {L}_{H,\beta }$ , and the existence of KMS states at inverse temperature $\beta $ is related to this operator. The critical inverse temperature $\beta _{c}$ is such that $\mathcal {L}_{H,\beta _{c}}$ has spectral radius 1. If $\beta <\beta _{c}$ , there are no KMS states on $\mathcal {O}_{\Gamma }$ and $\mathcal {T}_{\Gamma }$ ; if $\beta =\beta _{c}$ , there is a unique KMS state on $\mathcal {O}_{\Gamma }$ and $\mathcal {T}_{\Gamma }$ which is given by the eigenmeasure of $\mathcal {L}_{H,\beta _{c}}$ ; and if $\beta>\beta _{c}$ , including $\beta =\infty $ , the extreme points of the set of KMS states on $\mathcal {T}_{\Gamma }$ are parametrized by the elements of K and on $\mathcal {O}_{\Gamma }$ by the set of branched points.

Funder

Coordenação de Aperfeiçoamento de Pessoal de Nível Superior

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference20 articles.

1. KMS states of quasi-free dynamics on Pimsner algebras

2. [16] Mampusti, M. A. . Equilibrium states and Cuntz–Pimsner algebras on Mauldin–Williams graphs. PhD Thesis, School of Mathematics and Applied Statistics, University of Wollongong, 2019.

3. A construction of 𝐶*-algebras from 𝐶*-correspondences

4. [17] Mundey, A. D. . The noncommutative dynamics and topology of iterated function systems. PhD Thesis, School of Mathematics and Applied Statistics, University of Wollongong, 2020.

5. Crossed-products by finite index endomorphisms and KMS states

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3