Steady Euler flows and Beltrami fields in high dimensions

Author:

CARDONA ROBERT

Abstract

AbstractUsing open books, we prove the existence of a non-vanishing steady solution to the Euler equations for some metric in every homotopy class of non-vanishing vector fields of any odd-dimensional manifold. As a corollary, any such field can be realized in an invariant submanifold of a contact Reeb field on a sphere of high dimension. The solutions constructed are geodesible and hence of Beltrami type, and can be modified to obtain chaotic fluids. We characterize Beltrami fields in odd dimensions and show that there always exist volume-preserving Beltrami fields which are neither geodesible nor Euler flows for any metric. This contrasts with the three-dimensional case, where every volume-preserving Beltrami field is a steady Euler flow for some metric. Finally, we construct a non-vanishing Beltrami field (which is not necessarily volume-preserving) without periodic orbits in every manifold of odd dimension greater than three.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics,General Mathematics

Reference35 articles.

1. A characterization of 3D steady Euler flows using commuting zero-flux homologies

2. Regularization and minimization of codimension-one Haefliger structures

3. [32] Tao, T. . On the universality of the incompressible Euler equation on compact manifolds, II. Nonrigidity of Euler flows. Preprint, 2019, arXiv:1902.0631.

4. Topological Methods in Hydrodynamics

5. On vector fields having properties of Reeb fields;Hajduk;Topol. Methods Nonlinear Anal.,2013

Cited by 4 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Universality of Euler flows and flexibility of Reeb embeddings;Advances in Mathematics;2023-09

2. Steady Euler Flows on $${\mathbb {R}}^3$$ with Wild and Universal Dynamics;Communications in Mathematical Physics;2023-02-25

3. The topology of Bott integrable fluids;Discrete and Continuous Dynamical Systems;2022

4. The Periodic Orbit Conjecture for Steady Euler Flows;Qualitative Theory of Dynamical Systems;2021-05-20

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3