Author:
CHEN JIANYU,HU HUYI,PESIN YAKOV,ZHANG KE
Abstract
AbstractWe construct an example of a Hamiltonian flow
$f^t$
on a four-dimensional smooth manifold
$\mathcal {M}$
which after being restricted to an energy surface
$\mathcal {M}_e$
demonstrates essential coexistence of regular and chaotic dynamics, that is, there is an open and dense
$f^t$
-invariant subset
$U\subset \mathcal {M}_e$
such that the restriction
$f^t|U$
has non-zero Lyapunov exponents in all directions (except for the direction of the flow) and is a Bernoulli flow while, on the boundary
$\partial U$
, which has positive volume, all Lyapunov exponents of the system are zero.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
1 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献