Asymptotic analysis of the attractors in two-dimensional Kolmogorov flow

Author:

SMITH W. R.,WISSINK J. G.

Abstract

The high Reynolds-number structure of the laminar, chaotic and turbulent attractors is investigated in a two-dimensional Kolmogorov flow. The laminar attractors include the families of multi-phased travelling waves and quasi-periodic standing waves both of which form the backbone of the transition to a turbulent flow. At leading order, each laminar attractor under study is obtained by solving the Euler equations on a manifold subject to the appropriate periodicity and symmetry conditions. The manifold is determined by a finite number of vorticity equations, these being required to suppress the secular terms at the next order. Our results show that, for the multi-phased travelling waves, the first phase velocity can be determined by an integral conservation law for kinetic energy and the subsequent phase velocities can be evaluated by a non-linear eigenvalue problem. The results also reveal that whereas viscosity determines the smallest scales and controls the amplitude of the flow, the inertial terms govern the shape and form of the flow. The comparison of our analytical predictions for evaluating the stable single-phased travelling wave with the direct numerical simulation of the Navier–Stokes equations has been undertaken, the agreement being excellent. For sufficiently high Reynolds number, after the bifurcation to chaotic flow, all of the multi-phased travelling waves and quasi-periodic standing waves become unstable non-wandering sets. Based on the above new findings for these unstable non-wandering sets and other travelling and standing waves of this kind in phase space, necessary conditions for the invariant manifolds of the chaotic and turbulent attractors are obtained, these necessary conditions being conjectured to be also sufficient.

Publisher

Cambridge University Press (CUP)

Subject

Applied Mathematics

Reference41 articles.

1. Traveling Waves in Two-Dimensional Plane Poiseuille Flow

2. Occurrence of strange AxiomA attractors near quasi periodic flows onT m ,m≧3

3. Relaxation in two dimensions and the ‘‘sinh‐Poisson’’ equation

4. Investigation of the stability of a stationary solution of a system of equations for the plane movement of an incompressible viscous liquid;Meshalkin;Prikl. Mat. Mekh.,1961

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3