THE GROTHENDIECK CONSTANT IS STRICTLY SMALLER THAN KRIVINE’S BOUND

Author:

BRAVERMAN MARK,MAKARYCHEV KONSTANTIN,MAKARYCHEV YURY,NAOR ASSAF

Abstract

AbstractThe (real) Grothendieck constant ${K}_{G} $ is the infimum over those $K\in (0, \infty )$ such that for every $m, n\in \mathbb{N} $ and every $m\times n$ real matrix $({a}_{ij} )$ we have $$\begin{eqnarray*}\displaystyle \max _{\{ x_{i}\} _{i= 1}^{m} , \{ {y}_{j} \} _{j= 1}^{n} \subseteq {S}^{n+ m- 1} }\sum _{i= 1}^{m} \sum _{j= 1}^{n} {a}_{ij} \langle {x}_{i} , {y}_{j} \rangle \leqslant K\max _{\{ \varepsilon _{i}\} _{i= 1}^{m} , \{ {\delta }_{j} \} _{j= 1}^{n} \subseteq \{ - 1, 1\} }\sum _{i= 1}^{m} \sum _{j= 1}^{n} {a}_{ij} {\varepsilon }_{i} {\delta }_{j} . &&\displaystyle\end{eqnarray*}$$ The classical Grothendieck inequality asserts the nonobvious fact that the above inequality does hold true for some $K\in (0, \infty )$ that is independent of $m, n$ and $({a}_{ij} )$. Since Grothendieck’s 1953 discovery of this powerful theorem, it has found numerous applications in a variety of areas, but, despite attracting a lot of attention, the exact value of the Grothendieck constant ${K}_{G} $ remains a mystery. The last progress on this problem was in 1977, when Krivine proved that ${K}_{G} \leqslant \pi / 2\log (1+ \sqrt{2} )$ and conjectured that his bound is optimal. Krivine’s conjecture has been restated repeatedly since 1977, resulting in focusing the subsequent research on the search for examples of matrices $({a}_{ij} )$ which exhibit (asymptotically, as $m, n\rightarrow \infty $) a lower bound on ${K}_{G} $ that matches Krivine’s bound. Here, we obtain an improved Grothendieck inequality that holds for all matrices $({a}_{ij} )$ and yields a bound ${K}_{G} \lt \pi / 2\log (1+ \sqrt{2} )- {\varepsilon }_{0} $ for some effective constant ${\varepsilon }_{0} \gt 0$. Other than disproving Krivine’s conjecture, and along the way also disproving an intermediate conjecture of König that was made in 2000 as a step towards Krivine’s conjecture, our main contribution is conceptual: despite dealing with a binary rounding problem, random two-dimensional projections, when combined with a careful partition of ${ \mathbb{R} }^{2} $ in order to round the projected vectors to values in $\{ - 1, 1\} $, perform better than the ubiquitous random hyperplane technique. By establishing the usefulness of higher-dimensional rounding schemes, this fact has consequences in approximation algorithms. Specifically, it yields the best known polynomial-time approximation algorithm for the Frieze–Kannan Cut Norm problem, a generic and well-studied optimization problem with many applications.

Publisher

Cambridge University Press (CUP)

Subject

Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Analysis

Reference38 articles.

1. Quantum analogues of Bell’s inequalities. The case of two spatially divided domains;Tsirelson;Zap. Nauchn. Sem. Leningrad. Otdel. Mat. Inst. Steklov. (LOMI),1985

2. A proof of the Grothendieck inequality

3. J. A. Reeds , ‘A new lower bound on the real Grothendieck constant’, unpublished manuscript, available at http://www.dtc.umn.edu/reedsj/bound2.dvi 1991.

4. Grothendieck’s Theorem, past and present

5. Factorization of Linear Operators and Geometry of Banach Spaces

Cited by 26 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Concluding Remarks and Open Problems;Lecture Notes in Mathematics;2024

2. The Real Case: Towards Extending Krivine’s Approach;Lecture Notes in Mathematics;2024

3. Completely Correlation Preserving Functions;Lecture Notes in Mathematics;2024

4. Introduction and Motivation: The Outstanding Story of Grothendieck’s Theorem;Lecture Notes in Mathematics;2024

5. Inapproximability of Matrix \(\boldsymbol{p \rightarrow q}\) Norms;SIAM Journal on Computing;2023-02-14

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3