Autonomous Vehicular Landings on the Deck of an Unmanned Surface Vehicle using Deep Reinforcement Learning

Author:

Polvara RiccardoORCID,Sharma SanjayORCID,Wan Jian,Manning Andrew,Sutton Robert

Abstract

SummaryAutonomous landing on the deck of a boat or an unmanned surface vehicle (USV) is the minimum requirement for increasing the autonomy of water monitoring missions. This paper introduces an end-to-end control technique based on deep reinforcement learning for landing an unmanned aerial vehicle on a visual marker located on the deck of a USV. The solution proposed consists of a hierarchy of Deep Q-Networks (DQNs) used as high-level navigation policies that address the two phases of the flight: the marker detection and the descending manoeuvre. Few technical improvements have been proposed to stabilize the learning process, such as the combination of vanilla and double DQNs, and a partitioned buffer replay. Simulated studies proved the robustness of the proposed algorithm against different perturbations acting on the marine vessel. The performances obtained are comparable with a state-of-the-art method based on template matching.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering

Reference52 articles.

1. 40. G. Brockman , V. Cheung , L. Pettersson , J. Schneider , J. Schulman , J. Tang and W. Zaremba , “Openai gym,” arXiv preprint arXiv:1606.01540 (2016).

2. Language Understanding for Text-based Games using Deep Reinforcement Learning

3. 46. M. Abadi , A. Agarwal , P. Barham , E. Brevdo , Z. Chen , C. Citro , G. S. Corrado , A. Davis , J. Dean , M. Devin , et al., “Tensorflow: Large-scale machine learning on heterogeneous distributed systems,” arXiv preprint arXiv:1603.04467 (2016).

4. 36. T. Schaul , J. Quan , I. Antonoglou and D. Silver , “Prioritized experience replay,” arXiv preprint arXiv:1511.05952 (2015).

5. Outdoor autonomous landing on a moving platform for quadrotors using an omnidirectional camera

Cited by 31 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3