Abstract
In this paper, the kinematics and dynamics of a parallel manipulator
with a new architecture supposed to be used as a moving mechanism in a flight simulator project is studied. This manipulator with three independent degrees of freedom consists of a
moving platform connected to a based platform by means of three legs. Kinematic solutions for this manipulator at position, velocity and acceleration levels are obtained. Moreover, the dynamical equations of motion of the manipulator are determined using Newton-Euler's equations and applying the natural orthogonal complement (NOC) method. Using kinematics and dynamics and also performing simulation for different manoeuvres of moving platform, the motion and the actuator forces of the legs are obtained.
Publisher
Cambridge University Press (CUP)
Subject
Computer Science Applications,General Mathematics,Software,Control and Systems Engineering
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献