A flexible wearable e-skin sensing system for robotic teleoperation

Author:

Zhong ChuanyuORCID,Zhao Shumi,Liu Yang,Li Zhijun,Kan Zhen,Feng Ying

Abstract

AbstractElectronic skin (e-skin) is playing an increasingly important role in health detection, robotic teleoperation, and human-machine interaction, but most e-skins currently lack the integration of on-site signal acquisition and transmission modules. In this paper, we develop a novel flexible wearable e-skin sensing system with 11 sensing channels for robotic teleoperation. The designed sensing system is mainly composed of three components: e-skin sensor, customized flexible printed circuit (FPC), and human-machine interface. The e-skin sensor has 10 stretchable resistors distributed at the proximal and metacarpal joints of each finger respectively and 1 stretchable resistor distributed at the purlicue. The e-skin sensor can be attached to the opisthenar, and thanks to its stretchability, the sensor can detect the bent angle of the finger. The customized FPC, with WiFi module, wirelessly transmits the signal to the terminal device with human-machine interface, and we design a graphical user interface based on the Qt framework for real-time signal acquisition, storage, and display. Based on this developed e-skin system and self-developed robotic multi-fingered hand, we conduct gesture recognition and robotic multi-fingered teleoperation experiments using deep learning techniques and obtain a recognition accuracy of 91.22%. The results demonstrate that the developed e-skin sensing system has great potential in human-machine interaction.

Publisher

Cambridge University Press (CUP)

Subject

Computer Science Applications,General Mathematics,Software,Control and Systems Engineering,Control and Optimization,Mechanical Engineering,Modeling and Simulation

Reference25 articles.

1. Electronic skin as wireless human machine interfaces for robotic VR;Liu;Sci. Adv.,2022

2. A Fully Embedded Adaptive Real-Time Hand Gesture Classifier Leveraging HD-sEMG and Deep Learning

3. Sensing of joint and spinal bending or stretching via a retractable and wearable badge reel

4. Learning the signatures of the human grasp using a scalable tactile glove

5. Printing flexible and hybrid electronics for human skin and eye-interfaced health monitoring systems;Kim;Adv. Mater.,2020

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3