Geochemistry of the Laiyang Group from outcrops and Lingke-1 core on Lingshan Island, Shandong Province, Eastern China: implications for provenance, tectonic setting and palaeo-environment

Author:

Ma QingORCID,Zhou Yaoqi,Mu Hongyu,Zhou Tengfei,Zhao Hanjie,Yin Xingcheng,Liu Yanzi

Abstract

AbstractLower Cretaceous sedimentary rocks of Lingshan Island, located along the continental margin of East Asia, have received increased attention. The Lingke-1 core mainly belongs to the Lower Cretaceous Laiyang Group. We investigate provenance, tectonic setting, palaeoclimate and palaeoredox conditions in the study area using elemental geochemistry, thereby elucidating the depositional history of the Lower Cretaceous sediments and reconstructing the palaeo-environment. To achieve this, 90 siltstones and 76 mudstones were sampled from this core and other outcrops on Lingshan Island. The chemical index of alternation (CIA) values for the majority of the samples and the bivariate diagrams indicate that the sedimentary rocks were subjected to minor weathering processes. Geochemical results suggest that source rocks for the region are felsic igneous and metamorphic rocks, along with minor proportions of intermediate igneous rocks. Major- and trace-element discrimination diagrams, deciphering the tectonic history, indicate that source rocks mainly originated from the continental island-arc and active continental margin. Several representative geochemical indices and the bivariate plots based on elemental contents show that the Laiyang Group was predominantly deposited in arid conditions. Sr/Ba values suggest a palaeosalinity transition from brackish to saline, demonstrating a depositional transformation from lacustrine facies for the lower Laiyang Group to marine facies in the upper Laiyang Group. U/Th and V/(V+Ni) ratios and Ce anomalies in the rocks indicate anoxic conditions. We conclude that the conspicuous decline in the trends of the above three geochemical indices, ranging between 400 and 800 m, may be related to the latest Hauterivian oceanic anoxic event.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3