Geometry and formation of gypsum veins in mudstones at Watchet, Somerset, SW England

Author:

PHILIPP SONJA L.

Abstract

AbstractGypsum veins and faults were studied in red mudstones of the Upper Triassic Mercia Mudstone Group, in the Bristol Channel Basin, exposed in E–W-trending cliffs at Watchet on the Somerset Coast (SW England). In nodular gypsum horizons, individual gypsum nodules are connected by subhorizontal gypsum veins. In evaporite-free mudstone layers, however, dense anastomosing networks of gypsum veins occur. In a 300 m long profile dissected by 28 (mostly) normal faults with small displacements, 24 faults have veins following them, indicating palaeofluid transport along the fault planes. Ninety-seven cross-cutting relationships and mostly perpendicular vein fibres indicate that the veins are primarily extension fractures. The thickest veins in the vein network are subhorizontal (160 measurements), indicating a vertical orientation of the minimum principal compressive stress (horizontal basin compression). Such a stress state may have existed during basin inversion associated with Alpine compression (late Cretaceous to early Tertiary). I propose that the gypsum veins are the result of hydrofracturing. In the gypsum nodules, then presumably consisting of anhydrite, overpressure was generated related to the hydration of anhydrite to gypsum. Stress concentration around the nodules led to rupturing and injection of thin subhorizontal hydrofractures. Some of the calcium-sulphate saturated fluids were then transported upwards along the faults and gained access to evaporite-free mudstone layers where dense anastomosing vein networks developed. Most veins were arrested during their propagation by layers with contrasting mechanical properties (stress barriers). Some veins, however, propagated through the barriers along faults to shallower levels. The dense networks of mineral veins observed in Watchet indicate that hydrofractures can generate a very high temporary permeability in fluid reservoirs.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3