Middle Miocene climate transition in the Tibetan Plateau: identification and significance

Author:

Song ShijunORCID,Huang Lei,Zhang Yongshu,Zhang Qi,Zhou Fei,Liu Chiyang,Chen Yan,Wu Yingxiong,Zhang Yiming

Abstract

AbstractThe Middle Miocene Climatic Optimum is known for abrupt events during the global cooling trend of the past 20 Ma. Its identification in the Tibetan Plateau can help explain the cause of the critical Middle Miocene climate transition in Central Asia. In this study, fine-grained mixed sediments widely distributed in the Miocene Qaidam Lake in the northern Tibetan Plateau were used as a sensitive indicator for palaeoclimate. Their geochemical characteristics were investigated, together with an analysis of 2600 m long successive gamma-ray logging data from the whole JS2 drillcore, to understand the mid-Miocene climate transition in the Tibetan Plateau. By comparing the gamma-ray curve of the mixed sediments with global temperature, the Middle Miocene Climatic Optimum event can be easily identified. Further, the detailed petrological features and geochemical data of lacustrine fine-grained mixed sediments from a 400 m drillcore show oxidizing, high-sedimentation rate and brackish-saline water conditions in a semi-arid climate during the Middle Miocene period, demonstrating a dryer climate in the Qaidam Basin than in the monsoon-sensitive regions in Central Asia. These fine-grained mixed sediments have recorded climate drying before 15.3 Ma that represents a climatic transition within the Middle Miocene Climatic Optimum; increasing carbonate-rich mixed sediments, decreasing algal limestone layers and decreasing lacustrine organic matter are indicators of this transition. Regional tectonic events include the retreat of the Paratethys from Central Asia at ∼15 Ma and the synchronous tectonic reorganization of the Altyn-Tagh fault system and the northeastern Tibetan Plateau. We find that global climate change is the primary factor affecting the overall characteristics and changes of the Neogene climate in the Qaidam Basin, including the occurrence of the Middle Miocene Climatic Optimum and the cooling and drying tendency, while the regional events are a secondary factor.

Publisher

Cambridge University Press (CUP)

Subject

Geology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3