Incompressible analytical models for spinning-down pulsars

Author:

Giliberti E.,Antonelli M.ORCID,Cambiotti G.,Pizzochero P. M.

Abstract

Abstract We study a class of Newtonian models for the deformations of non-magnetised neutron stars during their spin-down. All the models have an analytical solution which allows to easily grasp the dependence of the strain on the star’s main physical quantities, such as radius, mass, and crust thickness. We first use the model proposed by Franco, Link, and Epstein that depicts the star as made of a fluid core and an elastic crust with the same density, to compare the response to a decreasing centrifugal force on stars having different masses and equations of state. We find that the strain angle is peaked at the equator and its maximum value decreases as a function of the mass. Afterwards, we introduce a second, more refined, model in which the core and the crust have different densities, and the gravitational potential of the deformed body is self-consistently accounted for. The strain angle is still a decreasing function of the stellar mass, but now its maximum value is typically peaked at the poles and is larger (by a factor of four) than the corresponding value in the one-density model. Finally, within the present analytic approach, we evaluate the impact of the Cowling approximation: when the perturbations of the gravitational potential are neglected, we find an underestimation of the centrifugal effect on the star, since the strain angle is about 40% of the one obtained with the complete model.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 8 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Quakes of compact stars;Monthly Notices of the Royal Astronomical Society;2023-01-25

2. Pulsar Glitches: A Review;Universe;2022-12-01

3. Mountain formation by repeated, inhomogeneous crustal failure in a neutron star;Monthly Notices of the Royal Astronomical Society;2022-05-18

4. Starquakes in millisecond pulsars and gravitational waves emission;Monthly Notices of the Royal Astronomical Society;2022-01-29

5. Revisiting neutron starquakes caused by spin-down;Astronomy & Astrophysics;2021-10

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3