Lyα Emitting Galaxies as a Probe of Reionisation

Author:

Dijkstra Mark

Abstract

AbstractThe Epoch of Reionization (EoR) represents a milestone in the evolution of our Universe. Star-forming galaxies that existed during the EoR likely emitted a significant fraction ( ~ 5 − 40%) of their bolometric luminosity as Lyα line emission. However, neutral intergalactic gas that existed during the EoR was opaque to Lyα emission that escaped from galaxies during this epoch, which makes it difficult to observe. The neutral intergalactic medium (IGM) may thus reveal itself by suppressing the Lyα flux from background galaxies. Interestingly, a ‘sudden’ reduction in the observed Lyα flux has now been observed in galaxies at z > 6. This review contains a detailed summary of Lyα radiative processes: I describe (i) the main Lyα emission processes, including collisional-excitation & recombination (and derive the origin of the famous factor ‘0.68’), and (ii) basic radiative transfer concepts, including e.g. partially coherent scattering, frequency diffusion, resonant versus wing scattering, optically thick versus ‘extremely’ optically thick (static/outflowing/collapsing) media, and multiphase media. Following this review, I derive expressions for the Gunn-Peterson optical depth of the IGM during (inhomogeneous) reionisation and post-reionisation. I then describe why current observations appear to require a very rapid evolution of volume-averaged neutral fraction of hydrogen in the context of realistic inhomogeneous reionisation models, and discuss uncertainties in this interpretation. Finally, I describe how existing & futures surveys and instruments can help reduce these uncertainties, and allow us to fully exploit Lyα emitting galaxies as a probe of the EoR.

Publisher

Cambridge University Press (CUP)

Subject

Space and Planetary Science,Astronomy and Astrophysics

Cited by 217 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3