Dealing with Outliers and Offsets in Radiocarbon Dating

Author:

Bronk Ramsey Christopher

Abstract

The wide availability of precise radiocarbon dates has allowed researchers in a number of disciplines to address chronological questions at a resolution which was not possible 10 or 20 years ago. The use of Bayesian statistics for the analysis of groups of dates is becoming a common way to integrate all of the 14C evidence together. However, the models most often used make a number of assumptions that may not always be appropriate. In particular, there is an assumption that all of the 14C measurements are correct in their context and that the original 14C concentration of the sample is properly represented by the calibration curve.In practice, in any analysis of dates some are usually rejected as obvious outliers. However, there are Bayesian statistical methods which can be used to perform this rejection in a more objective way (Christen 1994b), but these are not often used. This paper discusses the underlying statistics and application of these methods, and extensions of them, as they are implemented in OxCal v 4.1. New methods are presented for the treatment of outliers, where the problems lie principally with the context rather than the 14C measurement. There is also a full treatment of outlier analysis for samples that are all of the same age, which takes account of the uncertainty in the calibration curve. All of these Bayesian approaches can be used either for outlier detection and rejection or in a model averaging approach where dates most likely to be outliers are downweighted.Another important subject is the consistent treatment of correlated uncertainties between a set of measurements and the calibration curve. This has already been discussed by Jones and Nicholls (2001) in the case of marine reservoir offsets. In this paper, the use of a similar approach for other kinds of correlated offset (such as overall measurement bias or regional offsets in the calibration curve) is discussed and the implementation of these methods in OxCal v 4.0 is presented.

Publisher

Cambridge University Press (CUP)

Subject

General Earth and Planetary Sciences,Archaeology

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3