ADDITIVITY PROPERTIES OF SOFIC ENTROPY AND MEASURES ON MODEL SPACES

Author:

AUSTIN TIM

Abstract

Sofic entropy is an invariant for probability-preserving actions of sofic groups. It was introduced a few years ago by Lewis Bowen, and shown to extend the classical Kolmogorov–Sinai entropy from the setting of amenable groups. Some parts of Kolmogorov–Sinai entropy theory generalize to sofic entropy, but in other respects this new invariant behaves less regularly. This paper explores conditions under which sofic entropy is additive for Cartesian products of systems. It is always subadditive, but the reverse inequality can fail. We define a new entropy notion in terms of probability distributions on the spaces of good models of an action. Using this, we prove a general lower bound for the sofic entropy of a Cartesian product in terms of separate quantities for the two factor systems involved. We also prove that this lower bound is optimal in a certain sense, and use it to derive some sufficient conditions for the strict additivity of sofic entropy itself. Various other properties of this new entropy notion are also developed.

Publisher

Cambridge University Press (CUP)

Subject

Computational Mathematics,Discrete Mathematics and Combinatorics,Geometry and Topology,Mathematical Physics,Statistics and Probability,Algebra and Number Theory,Theoretical Computer Science,Analysis

Cited by 12 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. The Lanford–Ruelle theorem for actions of sofic groups;Transactions of the American Mathematical Society;2022-11-16

2. Free Energy, Gibbs Measures, and Glauber Dynamics for Nearest-Neighbor Interactions;Communications in Mathematical Physics;2022-11-10

3. A topological dynamical system with two different positive sofic entropies;Transactions of the American Mathematical Society, Series B;2022-02-17

4. Fractional free convolution powers;Indiana University Mathematics Journal;2022

5. Relative entropy and the Pinsker product formula for sofic groups;Groups, Geometry, and Dynamics;2021-03-25

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3