Abstract
Photosynthesis is the conversion of the quantum energy of light into the chemical energy of complex organic molecules and organized cellular structures in plants and in some bacteria. The processes of photosynthesis span the time domain of subpicoseconds to the millennia of slow-growing trees, its study brings together such diverse disciplines as photophysics, biochemistry, botany and ecology. In the last few decades tremendous progress has been made in understanding the multivarious chemical reactions that ultimately lead to the fixation of carbon dioxide into organic substance, yet the basic mechanism underlying the conversion of photon energy into chemical energy still remains very much an enigma. These so-called primary reactions which transduce the excitation energy of excited chlorophyll pigments into the potential energy of stabilized, separated charges on electron donor and electron acceptor molecules have been studied with a variety of physical techniques, among which fast optical spectroscopy and electron paramagnetic resonance (EPR) are prominent. This review will highlight one intriguing aspect of EPR, namely that of electron spin polarization (ESP).† It will be shown that ESP of photosynthetic primary reactants offers a unique tool to gain insight in the electrostatic and magnetic interactions that make photosynthesis work. Moreover, it will become apparent that ESP in photosynthesis has several unique traits not (yet) found in ESP of photochemical reactionsin vitro. As such, it may serve as a paradigma of ESP phenomena and will present an absorbing spectacle also for EPR spectroscopists outside photosynthesis.
Publisher
Cambridge University Press (CUP)
Cited by
89 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献