Electron spin polarization of photosynthetic reactants

Author:

Hoff A. J.

Abstract

Photosynthesis is the conversion of the quantum energy of light into the chemical energy of complex organic molecules and organized cellular structures in plants and in some bacteria. The processes of photosynthesis span the time domain of subpicoseconds to the millennia of slow-growing trees, its study brings together such diverse disciplines as photophysics, biochemistry, botany and ecology. In the last few decades tremendous progress has been made in understanding the multivarious chemical reactions that ultimately lead to the fixation of carbon dioxide into organic substance, yet the basic mechanism underlying the conversion of photon energy into chemical energy still remains very much an enigma. These so-called primary reactions which transduce the excitation energy of excited chlorophyll pigments into the potential energy of stabilized, separated charges on electron donor and electron acceptor molecules have been studied with a variety of physical techniques, among which fast optical spectroscopy and electron paramagnetic resonance (EPR) are prominent. This review will highlight one intriguing aspect of EPR, namely that of electron spin polarization (ESP).† It will be shown that ESP of photosynthetic primary reactants offers a unique tool to gain insight in the electrostatic and magnetic interactions that make photosynthesis work. Moreover, it will become apparent that ESP in photosynthesis has several unique traits not (yet) found in ESP of photochemical reactionsin vitro. As such, it may serve as a paradigma of ESP phenomena and will present an absorbing spectacle also for EPR spectroscopists outside photosynthesis.

Publisher

Cambridge University Press (CUP)

Subject

Biophysics

Cited by 89 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3