Abstract
Few fields of biochemistry have seen such widespread applications of physical theories and techniques as that of biological oxidation. There are obvious reasons for this. Oxidation-reduction reactions form the foundations of bioenergetics, an area which can only be understood in terms of thermodynamic theory. Most components of the mitochondrial respiratory chain contain transition metals, and these elements and their chemical environment can often be studied by modern spectroscopic methods, such as electron-paramagnetic resonance (EPR). The relation between spectroscopic properties and chemical structure of metallo-proteins, e.g. haem proteins, represents one of the few branches of present-day biochemistry to which quantum mechanical calculations can profitably be applied (see, for example, Zerner, Gouterman & Kobayashi, 1966).
Publisher
Cambridge University Press (CUP)
Reference75 articles.
1. Isolation of sperm whale myoglobin by low temperature fractionation with ethanol and metallic ions;Hardman;J. biol. Chem.,1966
2. Coupled cupric and ferric ions in cytochrome oxidase
3. Packer E. L. (1973). The use of aromatic residues to probe the iron-sulfur clusters of Clostridium acidi-urici and Clostridium pasteurianum ferredoxins, pp. 294–315. Ph.D. Thesis, Berkeley: the University of California.
4. Studies on the electron transport chain at subzero temperatures: Electron transport at site III
Cited by
135 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献