Systematic framework for performance evaluation of exoskeleton actuators

Author:

Di Natali ChristianORCID,Toxiri Stefano,Ioakeimidis Stefanos,Caldwell Darwin G.,Ortiz Jesús

Abstract

Abstract Wearable devices, such as exoskeletons, are becoming increasingly common and are being used mainly for improving motility and daily life autonomy, rehabilitation purposes, and as industrial aids. There are many variables that must be optimized to create an efficient, smoothly operating device. The selection of a suitable actuator is one of these variables, and the actuators are usually sized after studying the kinematic and dynamic characteristics of the target task, combining information from motion tracking, inverse dynamics, and force plates. While this may be a good method for approximate sizing of actuators, a more detailed approach is necessary to fully understand actuator performance, control algorithms or sensing strategies, and their impact on weight, dynamic performance, energy consumption, complexity, and cost. This work describes a learning-based evaluation method to provide this more detailed analysis of an actuation system for our XoTrunk exoskeleton. The study includes: (a) a real-world experimental setup to gather kinematics and dynamics data; (b) simulation of the actuation system focusing on motor performance and control strategy; (c) experimental validation of the simulation; and (d) testing in real scenarios. This study creates a systematic framework to analyze actuator performance and control algorithms to improve operation in the real scenario by replicating the kinematics and dynamics of the human–robot interaction. Implementation of this approach shows substantial improvement in the task-related performance when applied on a back-support exoskeleton during a walking task.

Publisher

Cambridge University Press (CUP)

Reference41 articles.

1. Design and Evaluation of the LOPES Exoskeleton Robot for Interactive Gait Rehabilitation

2. Rabadi, A (1995) Dc motor-harmonic drive torque control with application to robot joints 0977–0977.

3. Hip exoskeleton market-review of lift assist wearables;Sugar;Wearable Robotics Association,2018

4. Technology Acceptance and User-Centred Design of Assistive Exoskeletons for Older Adults: A Commentary

5. Preliminary Evaluation of a Powered Lower Limb Orthosis to Aid Walking in Paraplegic Individuals

Cited by 10 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3