Seasonal Effects on Ground-Wave propagation in Cold Regions

Author:

Blomquist Ake

Abstract

Abstract The ground-wave is the most important mode of propagation of radio waves in Connection with glaciology. In cold regions, special conditions are often prevalent, involving propagation over non-homogeneous earth, presence of stratified media, and low values of conductivity and dielectric constant in the upper strata. A radio wave which propagates along the Earth's surface is, however, also influenced by atmospheric refraction. As the frequency is increased, the roughness of the Earth's surface must also be taken into account. Thus seasonal variations are to be expected due to changes in the electrical and topographical properties of the ground as well as the propagation conditions in the atmosphere. It is, however, difficult to separate these various effects, a fact which reduces the possibility of using ground-wave propagation as a loot for obtaining information on the properties of the ground. Though the propagation of the ground-wave has been dealt with both theoretically and experimentally for almost a century, some of the most valuable information of major importance in cold regions has been obtained during the last ten years. New theoretical papers on propagation over stratified media offer an explanation of the amplitude and phase variations of the ground-wave field, which have been measured, as well as suggesting new methods to be tested as possible aids in solving glaciological problems. In many practical eases of ground-wave propagation in arctic regions, the formula for the ground-wave field strength can be written in a very simple way. Such a propagation model for frequencies above 30 MHz is presented in which account is taken of the Earth's curvature, the terrain irregularities, and the effect of the tropospheric refraction. This model also includes the recovery effect which occurs in propagation over mixed paths. At the higher frequencies the effect of depolarization becomes very important and sometimes overshadows field-strength variations due to the influence of the electrical properties. Finally some problems will be discussed which remain to be solved or have been given very little attention up to now.

Publisher

Cambridge University Press (CUP)

Subject

Earth-Surface Processes

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3