In-band RCS reduction antennas using an EBG surface

Author:

Parsha Manivara KumarORCID,Nandi ArnabORCID,Basu BananiORCID

Abstract

Abstract The paper has proposed a multilayer, polarization rotation featured, low radar cross-section (RCS) antenna using electromagnetic band-gap (EBG)-based frequency selective surface (FSS) at 8.25 GHz. Cross-shaped EBG unit cells offer zero reflection phase and −25 dB reflection magnitude at 8.25 GHz. The FSS layer consists of eight cross-shaped EBG unit cells sandwiched between two substrates to offer high absorptivity at the desired band. The circular patch antenna resonating at 8.25 GHz is placed on the top substrate having a lower dielectric constant. Four circular-shaped patches are etched at the four corners of the top layer and are coupled with two feed lines which are aligned 90° to each other at the bottom layer and interconnected diagonally to achieve polarization rotation. The proposed antenna offers a gain of 6.72 dB and an in-band RCS of −21.4 dBsm. Incident energy is backscattered into eight directions separated by angle ϕ = 45°. The proposed antenna has the RCS reduction band of 7.7–9.4 GHz. It offers normalized polarization rotation ratio more than 0.8 within the −40° to 40° angular region at the frequency band 8–8.5 GHz. The measured result using the fabricated prototype agrees well with the simulated one.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 7 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. RCS Reduction Techniques: A Comparative Review;2023 Annual International Conference on Emerging Research Areas: International Conference on Intelligent Systems (AICERA/ICIS);2023-11-16

2. A Brain-inspired Approach for Malware Detection using Sub-semantic Hardware Features;Proceedings of the Great Lakes Symposium on VLSI 2023;2023-06-05

3. A monostatic RCS reduction study for an antenna in structural mode at X band;International Journal of Electronics;2023-05-29

4. Wideband low RCS Patch Antenna With Chessboard AMC;2023 International Conference on Microwave and Millimeter Wave Technology (ICMMT);2023-05-14

5. RCS analysis on ultra-wideband sinuous antenna with elliptical slots;2022 Microwave Mediterranean Symposium (MMS);2022-05-09

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3