Drop deformation estimate with multi-polarization radar

Author:

Averyanova Yuliya,Rudiakova AnnaORCID,Yanovsky Felix

Abstract

AbstractThis paper considers the ability of polarization measurements for microwave remote sensing of clouds and precipitation. The simulation of reflections from liquid hydrometeors with a multi-polarization radar system is presented. The mathematical expression of energy received by a radar antenna with arbitrary polarization is obtained. The simulation of the energy redistribution of the signal reflected from liquid hydrometeors assembled over the antennas of multi-polarimetric radar for different wind conditions and different drop-size distributions is obtained and analyzed. The simulation results demonstrate the possibility to register wind and wind-related phenomena by polarimetric radar. The results of the paper can also be used to exclude an impact of drop vibration or oscillation into the radar signal to eliminate errors and underestimation during parameter measurements. The approach to segregate the reflected signal magnitude variations due to the wind-related phenomena from other factors is discussed.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 6 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Gaussian Mixture Model Based Machine Learning Approach for Detection of Threat Types in Communication Networks;2023 IEEE 13th International Conference on Electronics and Information Technologies (ELIT);2023-09-26

2. Approach for Automated Designing Robust Systems for Stabilizing Data Measuring Sensors;2023 17th International Conference on the Experience of Designing and Application of CAD Systems (CADSM);2023-02-22

3. Methods of Service Life Determining for Aviation Radio Equipment;2022 12th International Conference on Dependable Systems, Services and Technologies (DESSERT);2022-12-09

4. Processing Information in Redundant Inertial Measuring Instruments;2022 12th International Conference on Dependable Systems, Services and Technologies (DESSERT);2022-12-09

5. Model for Wind-Related Phenomena Estimation Using Polarization Characteristics of Microwave Radar Signal;2022 IEEE 16th International Conference on Advanced Trends in Radioelectronics, Telecommunications and Computer Engineering (TCSET);2022-02-22

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3