Author:
Molchanov Pavlo,Harmanny Ronny I.A.,de Wit Jaco J.M.,Egiazarian Karen,Astola Jaakko
Abstract
The popularity of small unmanned aerial vehicles (UAVs) is increasing. Therefore, the importance of security systems able to detect and classify them is increasing as well. In this paper, we propose a new approach for UAVs classification using continuous wave radar or high pulse repetition frequency (PRF) pulse radars. We consider all steps of processing required to make a decision out of the raw radar data. Before the classification, the micro-Doppler signature is filtered and aligned to compensate the Doppler shift caused by the target's body motion. Then, classification features are extracted from the micro-Doppler signature in order to represent information about class at a lower dimension space. Eigenpairs extracted from the correlation matrix of the signature are used as informative features for classification. The proposed approach is verified on real radar measurements collected with X-band radar. Planes, quadrocopter, helicopters, and stationary rotors as well as birds are considered for classification. Moreover, a possibility of distinguishing different number of rotors is considered. The obtained results show the effectiveness of the proposed approach. It provides the capability of correct classification with a probability of around 92%.
Publisher
Cambridge University Press (CUP)
Subject
Electrical and Electronic Engineering
Reference18 articles.
1. Helicopter radar return analysis: Estimation and blade number selection
2. Koolhoven M. : Ratelband drone plane crash at Binnenhof. http://www.telegraaf.nl/binnenland/20876587/__Ratelband_laat_vliegtuigje_crashen__.html, September 2013.
3. Analysis of jet engine modulation effect with extended Hilbert‐Huang transform
Cited by
115 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献