Design and analysis of 80-W wideband asymmetrical Doherty amplifier

Author:

Bathich Khaled,Boeck Georg

Abstract

This paper presents the analysis and design of a wideband asymmetrical Doherty amplifier. The frequency response of the output combining network of the Doherty amplifier with arbitrary back-off level configuration is analyzed. Other bandwidth-limiting factors were discussed and analyzed as well. A number of performance enhancement techniques were taken into consideration to obtain high and flat back-off efficiency over the amplifier design band of 1.7–2.25 GHz. The designed Doherty amplifier had, at 8.0–9.9 dB output back-off, a minimum efficiency of η = 50% [power-added efficiency of 45%], measured near 40 dBm of output power, and over 28% bandwidth. Using digital predistortion (DPD) linearization, an adjacent-channel leakage ratio (ACLR) of −43 dBc was obtained for a single-carrier W-CDMA signal, at 40.9 dBm and 46% of average output power and drain efficiency, respectively. The designed amplifier represents the first wideband Doherty amplifier reported over extended power back-off range.

Publisher

Cambridge University Press (CUP)

Subject

Electrical and Electronic Engineering

Cited by 9 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. A Symmetric Wideband Doherty Power Amplifier for the n78 - 5G NR Frequency Band;2022 18th International Conference on Wireless and Mobile Computing, Networking and Communications (WiMob);2022-10-10

2. A C-Band Broadband Asymmetric Doherty Power Amplifier Using Phase Compensation and Low Q Technology;Journal of Circuits, Systems and Computers;2022-08-10

3. Doherty power amplifier output networks with maximized bandwidth;International Journal of Microwave and Wireless Technologies;2022-04-06

4. Systematic Design Methodology of Broadband Doherty Amplifier Using Unified Matching/Combining Networks With an Application to GaN MMIC Design;IEEE Access;2021

5. A 100-W Doherty Power Amplifier With Super-Octave Bandwidth;IEEE Transactions on Circuits and Systems II: Express Briefs;2020-06

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3