Survival physiology and sex ratio of the Chinese white pine beetle Dendroctonus armandi (Coleoptera: Scolytinae) during host colonization and overwintering

Author:

Dai L.,Zheng J.,Wang Y.,Sun Y.,Chen H.

Abstract

AbstractThe Chinese white pine beetle Dendroctonus armandi (Coleoptera: Scolytinae) typically displays bivoltinism at altitudes below 1700 m in the Qinling Mountains, China. The periods of host colonization and larval overwintering are two important phases in the life cycle of bark beetles, as it is during these periods that they have to contend with host plant defences and periods of intense cold, respectively. Although during different seasons, the females and males of Chinese white pine beetles show varying tolerances to host plant terpenoids, the sex ratio and survival physiology condition of the two beetle generations are unknown. We investigated the sex ratio of individuals, and also examined the body mass, energy stores, and detoxication enzymes of males and females in each of the two generations in order to determine the overall population stability of each generation. We identified a female-biased sex ratio among adults in both generations. Furthermore, patterns of body mass, energy stores, and detoxication enzymes were found to differ between the two sexes and two seasons. Compared with the males, the females have a larger body mass and higher amounts of stored lipids, which are assumed to be adaptations designed to overcome host resistance and facilitate subsequent oviposition.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

Reference52 articles.

1. The enzymes of detoxication;Jakoby;Journal of Biological Chemistry,1990

2. Developmental mortality increases sex‐ratio bias of a size‐dimorphic bark beetle

3. Evolutionary assembly of the conifer fauna: distinguishing ancient from recent associations in bark beetles

4. A simple method for the isolation and purification of total lipids from animal tissues;Folch;Journal of Biological Chemistry,1957

Cited by 3 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3