Complete mitochondrial genome of bamboo grasshopper, Ceracris fasciata, and the phylogenetic analyses and divergence time estimation of Caelifera (Orthoptera)

Author:

Gao S.,Chen J.J.,Jiang G.F.

Abstract

AbstractThe bamboo grasshopper Ceracris fasciata is regarded as a major pest species because of the damage it causes to bamboo, and its classification within the families and subfamilies of the suborder Caelifera remains unclear. Thus, we attempted to resolve these questions using molecular biology methods and analyses. Our results are as follows: (1) the complete mitochondrial genome of C. fasciata is 15,569 bp in length. The mitochondrial genome contains a standard set of 13 protein-coding genes, 22 transfer RNA genes, 2 ribosomal RNA genes and an A + T-rich region in the same order as those of the other analysed Caeliferan species. The putative start codon for the COX1 gene in C. fasciata is ACC, although it is not defined in other genes. The presence of tandem repeats of different sizes in the A + T-rich region may lead to size differences in other mitochondrial genomes. The mitochondrial genome of C. fasciata harbours the typical 37 genes and an A + T-rich region, and it shows similar characteristics to those of other grasshopper species. Characterization of the mitochondrial genome has enriched our knowledge of the mitochondrial genomes of Orthoptera around the world. Therefore, the phylogenetic relationships in Orthoptera can be re-examined. (2) In phylogenetic analyses, the monophyly of Orthoptera and its two suborders (Caelifera and Ensifera) has been consistently recovered based on most of the datasets selected, regardless of the optimal criteria. Our results do not support the monophyly of the subfamily Oedipodinae of Caelifera. We found that Phlaeoba albonema of the Acridinae is sorted into a clade with Ceracris in all our phylogenetic trees, and field experiments show that Phlaeoba always lives with Ceracris in the same ecotopes. Therefore, we suggest that Phlaeoba should be classified as a member of the Oedipodinae. We found that C. fasciata always clustered with Ceracris kiangsu, and both were sisters to Ceracris versicolor. Therefore, the genetic relationship between C. fasciata and C. kiangsu is closer than that between C. fasciata and C. versicolor. (3) The oldest estimated time of divergence of Ensifera in this context was determined to be 146.16 million years ago (Mya), or around the late Jurassic or early Cretaceous. We estimated that katydids (Grylloidea) likely diverged from other groups in the early Cretaceous. According to our divergence time analyses, we concluded that the ancestral Acrididae probably originated in the early Paleogene, and it is likely that the major diversification events happened at the middle Paleogene, well into the next geologic time. We estimated that crickets (Tettigoniidae) likely diverged from other groups in the early Cretaceous. Acrididae and Romaleinae group, Pyrgacrididae and Ommexechidae group, the youngest two clades we observed, were estimated to have diverged 58.79 Mya, between the middle and early Paleogene. C. versicolor is a sister to the group containing C. kiangsu and C. fasciata. First, C. versicolor diverged from the sister group (C. kiangsu + C. fasciata) around 44.81 Mya, and then the C. kiangsu and C. fasciata group separated at 43.04 Mya.

Publisher

Cambridge University Press (CUP)

Subject

Insect Science,Agronomy and Crop Science,General Medicine

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3