Cosmic Dust in the Atmosphere and in the Interplanetary Space at 1 AU Today and in the Early Solar System

Author:

Fechtig H.

Abstract

Reliable measurements of cosmic dust abundances have been obtained by ionization detectors during particle impact and by collectors controlled either by inflight shadowing or by penetration-hole identification. A description of the techniques used is given.Crater-number densities observed on the lunar surface and on lunar samples represent an important source of information on cosmic dust fluxes. The related results from the Apollo 11 and 12 missions are reviewed. The overall knowledge gained from these measurements leads to the following flux model: The cumulative flux Φ vs mass m follows the extrapolation from larger meteoroid-size range (Watson’s Law) and can be described byThe Pioneer 8 dust experiment and lunar samples indicate a depletion of the flux at approximately 10-8g. However, cosmic dust particles exist in interplanetary space at least down to 0.3 μ. diameter. They are interpreted as nonmetallic particles in the solar system.The atmosphere shows an enhancement in particles of about one order of magnitude compared to the flux in interplanetary space at 1 AU. No depletion or cutoff could be detected. These particles are interpreted as lunar debris or as disintegrated products from fireballs.The numbers of large lunar craters (>140 m diameter) in Mare Tranquillitatis and in Oceanus Procellarum are compared with the meteoroid flux. These comparisons lead to a time-variable flux of Φ.e-Bt, with B = 2.6 and t = time in 109 yr. Thus, the meteoroidflux at the formation of the lunar maria was approximately 4 orders of magnitude higher than today.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Reference58 articles.

1. A model for predicting the results of in situ meteoroid experiments: Pioneer 8 and 9 results and phenomenological evidence;Gerloff;Space Research,1971

2. Trace Elements and Radioactivity in Lunar Rocks: Implications for Meteorite Infall, Solar-Wind Flux, and Formation Conditions of Moon

3. Penetration studies of iron dust particles in thin foils;Grün;Space Research,1969

Cited by 2 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Meteor Trails and Columniform Sprites;Icarus;2000-11

2. Preparing for the 1998/99 Leonid Storms;Laboratory Astrophysics and Space Research;1999

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3