Observations of Rapid Variability in Be Stars (Review Paper)

Author:

Percy John R.

Abstract

AbstractPhotometric and/or spectroscopic variability on time scales of approximately 0.2 to 2 days has been observed in over 40 Be stars, and is suspected in many more. This paper reviews the observational aspects of this phenomenon: both surveys and studies of individual objects. This phenomenon is not easy to study and interpret: (i) the time scale is inconvenient (ii) there have been very few simultaneous photometric and spectroscopic studies of individual objects (iii) the photometric variability is small, often irregular and superimposed on longer-term variability and (iv) the spectroscopic variability is usually observed as absorption line profile variability, which requires special instrumentation. For these and other reasons, there is not yet a universal agreement about the nature of this phenomenon. Nevertheless, it deserves further intensive study, not only because it is common, but also because in one or two stars, there is evidence that the rapid variability may be related (causally perhaps?) to the longer-term variability in these stars - variability whose ultimate cause is still not known.

Publisher

Cambridge University Press (CUP)

Subject

General Medicine

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Long-Term Monitoring of the Complex Variations of be Stars;The Impact of Long-Term Monitoring on Variable Star Research;1994

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3