Abstract
SummaryThe effects of slanting the base of a slender axisymmetric cylinder (length/diameter ratio of 9), aligned with the flow, was studied experimentally. The body was equipped with interchangeable rear ends covering a range of slant angles between 0° (vertical) and 70°. It was found that the base slant has a very dramatic effect on body drag, particularly in a relatively narrow range of slant angles where the drag coefficient exhibits a large local maximum (over-shoot). Detailed study of the flow showed that the drag overshoot is related to the existence of two very different Separation patterns on the slanted base. One pattern is similar to that found behind axisymmetric bodies with no base slant, and its main feature is the presence of a closed Separation region adjacent to the base. The other pattern is highly three-dimensional with two streamwise vortices forming along the sides of the slanted base. This pattern sets in very abruptly at a “critical” slant angle α ∼ 47°. Drag force measurements showed that, at first, the drag coefficient slowly increases with the slant angle, but then jumps suddenly upwards to more than double its baseline value (from CD = 0.24 to CD = 0.625) at the critical angle. At angles higher than that CD decreases again, and at 70° it is about equal to the baseline value. Further effects of the slant angle are the generation of a large side force and a significant increase in near-wake flow periodicity.
Publisher
Cambridge University Press (CUP)
Reference5 articles.
1. Janssen L.J. and Hucho W.H. , Aerodynamische Formoptimierung der Typen VW Golf and VW Scirocco. In the Proceedings of Kolloquium ueber Industrieaerodynamik, Part 3, pp 49–70, 1974
2. Roshko A. , On the Drag and Shedding Frequency of Two-Dimensional Bluff Bodies. MCA TN-3169, July 1954.
3. Experiments on the flow past an inclined disk
Cited by
50 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献