Amelioration of a saline sodic soil through cultivation of a salt-tolerant grass Leptochloa fusca

Author:

Akhter J.,Mahmood K.,Malik K.A.,Ahmed S.,Murray R.

Abstract

Reclamation of saline lands seems difficult for climatic and economic reasons, but cultivation of salt-tolerant plants is an approach to increasing productivity and improvement of salt-affected wastelands. A five-year field study was conducted to evaluate the effects of growing a salt-tolerant species Leptochloa fusca (L.) Kunth (kallar grass) on chemical properties of a saline sodic soil irrigated with poor quality groundwater. Soil salinity, sodicity and pH decreased exponentially by growing kallar grass as a result of leaching of salts from surface (0–20 cm) to lower depths (>100 cm). Concentrations of soluble cations (Na+, K+, Ca2+ and Mg2+) and anions (Cl, SO42− and HCO3) were reduced through to greater soil depths. A significant decline in soil pH was attributed to release of CO2 by grass roots and solublization of CaCO3. Both soil salinity and soil pH were significantly correlated with Na+, Ca2+, Mg2+, K+, Cl, HCO3 and sodium adsorption ratio (SAR). Significant correlations were found between soluble cations (Na+, Ca2+ and K+), soluble anions (Cl, SO42− and HCO3) and the SAR. In contrast, there were negative correlations between soil organic matter content and all chemical properties. The ameliorative effects on the soil chemical environment were pronounced after three years of growing kallar grass. Cultivation of kallar grass enhanced leaching and interactions among soil chemical properties and thus restored soil fertility. The soil maintained the improved characteristics with further growth of the grass up to five years suggesting that growing salt-tolerant plants is a sustainable approach to biological amelioration of saline wastelands.

Publisher

Cambridge University Press (CUP)

Subject

Health, Toxicology and Mutagenesis,Management, Monitoring, Policy and Law,Nature and Landscape Conservation,Pollution,Water Science and Technology

Cited by 36 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3