Machine Learning with High-Cardinality Categorical Features in Actuarial Applications

Author:

Avanzi BenjaminORCID,Taylor Greg,Wang MelanthaORCID,Wong Bernard

Abstract

AbstractHigh-cardinality categorical features are pervasive in actuarial data (e.g., occupation in commercial property insurance). Standard categorical encoding methods like one-hot encoding are inadequate in these settings.In this work, we present a novel Generalised Linear Mixed Model Neural Network (“GLMMNet”) approach to the modelling of high-cardinality categorical features. The GLMMNet integrates a generalised linear mixed model in a deep learning framework, offering the predictive power of neural networks and the transparency of random effects estimates, the latter of which cannot be obtained from the entity embedding models. Further, its flexibility to deal with any distribution in the exponential dispersion (ED) family makes it widely applicable to many actuarial contexts and beyond. In order to facilitate the application of GLMMNet to large datasets, we use variational inference to estimate its parameters—both traditional mean field and versions utilising textual information underlying the high-cardinality categorical features.We illustrate and compare the GLMMNet against existing approaches in a range of simulation experiments as well as in a real-life insurance case study. A notable feature for both our simulation experiment and the real-life case study is a comparatively low signal-to-noise ratio, which is a feature common in actuarial applications. We find that the GLMMNet often outperforms or at least performs comparably with an entity-embedded neural network in these settings, while providing the additional benefit of transparency, which is particularly valuable in practical applications.Importantly, while our model was motivated by actuarial applications, it can have wider applicability. The GLMMNet would suit any applications that involve high-cardinality categorical variables and where the response cannot be sufficiently modelled by a Gaussian distribution, especially where the inherent noisiness of the data is relatively high.

Publisher

Cambridge University Press (CUP)

Reference56 articles.

1. Scikit-learn: Machine learning in Python;Pedregosa;Journal of Machine Learning Research,2011

2. Pettifer, A. , Pettifer, J. , 2012. A practical guide to commercial insurance pricing, in: Australian Actuaries Institute General Insurance Seminar, Sydney. pp. 1–40. https://www.actuaries.asn.au/Library/Events/GIS/2012/GIS2012PaperAlinaPettifer.pdf.

3. The use of autoencoders for training neural networks with mixed categorical and numerical features

4. State of New York, 2022. Assembled workers’ compensation claims: Beginning 2000. https://data.ny.gov/Government-Finance/Assembled-Workers-Compensation-Claims-Beginning-20/jshw-gkgu.

5. Gelman, A. , Hill, J. , 2007. Data analysis using regression and multilevel/hierarchical models. Analytical methods for social research, Cambridge University Press, Cambridge ; New York. OCLC: ocm67375137.

Cited by 1 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

1. Experience Rating in Insurance Pricing;SSRN Electronic Journal;2024

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3