Abstract
Abstract
We study a classical multitype Galton–Watson process with mutation and selection. The individuals are sequences of fixed length over a finite alphabet. On the sharp peak fitness landscape together with independent mutations per locus, we show that, as the length of the sequences goes to ∞ and the mutation probability goes to 0, the asymptotic relative frequency of the sequences differing on k digits from the master sequence approaches (σe-a - 1)(ak/k!)∑i≥ 1ik/σi, where σ is the selective advantage of the master sequence and a is the product of the length of the chains with the mutation probability. The probability distribution Q(σ, a) on the nonnegative integers given by the above equation is the quasispecies distribution with parameters σ and a.
Publisher
Cambridge University Press (CUP)
Subject
Statistics, Probability and Uncertainty,General Mathematics,Statistics and Probability
Cited by
2 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献