Abstract
AbstractIn this paper we consider a projective connection as defined by the nth-order Adler-Gelfand-Dikii (AGD) operator on the circle. It is well-known that the Korteweg-de Vries (KdV) equation is the archetypal example of a scalar Lax equation defined by a Lax pair of scalar nth-order differential (AGD) operators. In this paper we derive (formally) the KdV equation as an evolution equation of the AGD operator (at least for n ≤ 4) under the action of Vect(S1). The solutions of the AGD operator define an immersion R → RPn−1 in homogeneous coordinates. In this paper we derive the Schwarzian KdV equation as an evolution of the solution curve associated with Δ(n), for n ≤ 4.
Publisher
Cambridge University Press (CUP)
Subject
Mathematics (miscellaneous)
Cited by
7 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献