The effect of light, seed size and biomass removal on cotyledon reserve use and root mass allocation in Gustavia superba seedlings

Author:

Barberis Ignacio M.,Dalling James W.

Abstract

Abstract:Some large-seeded tree species have cotyledonary reserves that persist for months after seedling establishment. We carried out two screened growing-house experiments with seedlings of Gustavia superba (Lecythidaceae) to test hypotheses proposed to explain why cotyledons are retained. We grew seedlings from large and small seeds in sun and shade to determine if cotyledon reserves supplement photosynthetic carbon gain, and in a second experiment applied defoliation and shoot removal treatments to determine if reserves are allocated to resprout tissue. In each experiment we tracked cotyledonary resource use over time and measured the fraction of seedling biomass allocated to roots and shoots. We found no evidence that light environment, seed size or damage treatment affected the rate of cotyledon resource usage; 20% of the cotyledonary mass remained 9 wk after leaves were fully developed in both sun and shade and 25–30% of the cotyledonary mass remained 6 wk after leaf or shoot removal. Instead, cotyledon reserves appear to be slowly translocated to roots regardless of light environment or seedling damage. Once seedlings are established, lost tissue is replaced using reserves stored in roots; in high light, damaged seedlings had a lower root mass fraction (0.42) than undamaged ones (0.56) when considering the mass of tissue removed and resprout tissue combined. We conclude that cotyledon reserves are important for resprouting during early seedling emergence and establishment, but do not directly contribute to seedling growth or biomass recovery from herbivores at the post-establishment stage. Persistence of cotyledons may ultimately depend on the development of sufficient root mass for reserve reallocation.

Publisher

Cambridge University Press (CUP)

Subject

Ecology, Evolution, Behavior and Systematics

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3