Abstract
The structures of the enveloping semigroups of certain elementary finite- and infinite-dimensional distal dynamical systems are given, answering open problems posed in 1982 by Namioka [Ellis groups and compact right topological groups. Conference in Modern Analysis and Probability (New Haven, CT, 1982) (Contemporary Mathematics, 26). American Mathematical Society, Providence, RI, 1984, 295–300]. The universal minimal system with (topological) quasi-discrete spectrum is obtained from the infinite-dimensional case. It is proved that, on the one hand, a minimal system is a factor of this universal system if and only if its enveloping semigroup has quasi-discrete spectrum and that, on the other hand, such a factor need not have quasi-discrete spectrum in itself. This leads to a natural generalization of the property of having quasi-discrete spectrum, which is named the ${\mathcal{W}}$-property.
Publisher
Cambridge University Press (CUP)
Subject
Applied Mathematics,General Mathematics
Cited by
4 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献