Human cone receptor activity: The leading edge of the a–wave and models of receptor activity

Author:

Hood Donald C.,Birch David G.

Abstract

AbstractThe leading edge of the a–wave of the electroretinogram (ERG) was evaluated as a measure of human cone photoreceptor activity. The amplitude of the cone a–wave elicited by flashes of different energy was compared to the predictions of a class of models from in vitro studies of cone photoreceptors. These models successfully describe the leading edge of the a–wave. Thus, the human cone a–wave can be used to test hypotheses about normal and abnormal cone receptors. The ability of the human cone to adjust its sensitivity in the presence of steady adapting lights was assessed by recording cone a–waves to flashes on adapting fields up to 3.9 log td in intensity and by comparing these responses to quantitative models of adaptation. The first 10 ms of the cone's response is little affected by field intensities up to 2.9 log td. The 3.9 log td field reduced the response to weak flashes by about a factor of 2.5 (0.4 log unit). This relatively small reduction in sensitivity can be attributed to a combination of response compression, pigment bleaching, and an adaptation mechanism that changes the gain without changing the time course. We conclude that either the human cones show relatively little adaptation or that they have an adaptation mechanism that involves a time-course change. That is, as we are limited with the a–wave to the first 10 ms or so of the cone's response, we cannot rule out a gain mechanism linked to a time-course change.

Publisher

Cambridge University Press (CUP)

Subject

Sensory Systems,Physiology

Cited by 124 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3