The number of configurations in an assembly and cooperative phenomena

Author:

Chang T. S.

Abstract

We consider an ideal problem of adsorption of single and double particles upon a solid surface which has its sites of accommodation regularly arranged, and by comparing the equilibrium properties obtained by Bethe's method with the ordinary statistical formulae, we obtain approximate expressions for:(1) g(N, n, X), the number of ways of arranging n particles upon N sites of a lattice so that the number of neighbouring sites occupied by the particles is X.(2) g2(N, n, X), the number of ways of arranging n double particles upon N sites so that each of the double particles takes up two adjacent sites and the number of neighbouring sites occupied by two different particles is X.Both these expressions are found to agree with the exact values when the N sites lie on a straight line. When we use the first expression to construct the configurational partition functions of certain physical assemblies and expand them in powers of 1/kT, they are found to agree with the corresponding rigorous expressions as far as (1/kT)3, which is the highest power which we can find rigorously at present. With the help of the first expression, formal equations for superlattice formation in an alloy with the composition 1: 1 and equations for the separation into phases of regular liquids are given. Lastly we show that atoms and molecules in a regular liquid may dissociate or recombine suddenly accompanied by a latent heat. This is a new cooperative phenomenon, which may bear some resemblance to the melting process between the solid and liquid states.

Publisher

Cambridge University Press (CUP)

Subject

General Mathematics

Cited by 53 articles. 订阅此论文施引文献 订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献

同舟云学术

1.学者识别学者识别

2.学术分析学术分析

3.人才评估人才评估

"同舟云学术"是以全球学者为主线,采集、加工和组织学术论文而形成的新型学术文献查询和分析系统,可以对全球学者进行文献检索和人才价值评估。用户可以通过关注某些学科领域的顶尖人物而持续追踪该领域的学科进展和研究前沿。经过近期的数据扩容,当前同舟云学术共收录了国内外主流学术期刊6万余种,收集的期刊论文及会议论文总量共计约1.5亿篇,并以每天添加12000余篇中外论文的速度递增。我们也可以为用户提供个性化、定制化的学者数据。欢迎来电咨询!咨询电话:010-8811{复制后删除}0370

www.globalauthorid.com

TOP

Copyright © 2019-2024 北京同舟云网络信息技术有限公司
京公网安备11010802033243号  京ICP备18003416号-3