Abstract
AbstractThe to method of matched asymptotic expansions is employed to calculate the mass tre sport velocity due to combinations of small amplitude oscillatory waves propagatir, at a single frequency in fluid systems with density and viscosity dis-continuities. Interfacial boundary layers are considered in terms of the curvilinear coordinate system described by Longuet-Higgins(1). The order of magnitude of the mass transport velocity calculated for a general oscillatory disturbance is the same as that calculated for interfacial progressive waves by Dore(2). For standing waves, the time-averaged motion of the fluid particles forms a cellular structure in each fluid layer; the mass transport velocity due to modal interactions is associated with a similar structure.
Publisher
Cambridge University Press (CUP)
Reference7 articles.
1. Mass transport induced by wave motion;Huang;J. Mar. Rea.,1970
2. (5) Dore B. D. A study of mass transport in boundary layers at oscillating free surfaces and interfaces. Proceedings of the Iutam Symposium on Unsteady Boundary Layers (Volume II), Laval University, Quebec (May 1971), Laval University Press (1972), 1535–1583.
3. Mass transport in the boundary layer at a free oscillating surface
4. Mass transport in water waves
5. I. On the circulation of air observed in Kundt’s tubes, and on some allied acoustical problems
Cited by
29 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献