Abstract
The problem of the torsion of beams of ⊥- and L-cross-sections has received attention from very few authors despite its important technical applications. The first mathematical solution in this connection was obtained by F. Kötter in 1908 for an L-section both of whose arms are infinite. He attacked the problem by the use of the known solution of the rectangle and by application of the scheme of conformal transformation. Kötter's method, however, does not lend itself readily to the solution of the problem involving more than one re-entrant angle. The first solution for the torsion of a beam whose cross-section is a rectilinear polygon of n sides was published in 1921 by E. Trefftz who also applied his method to an infinite L-section. Recently I. S. Sokolnikoff has suggested a more general method depending upon the fundamental theorem of potential theory that a harmonic function is uniquely determined by the values assigned along the boundary of the region within which the harmonic function is sought, the boundary condition and the region being subject to certain well-known assumptions of continuity, connectivity, etc. As an illustration of his method he has given an approximate solution for a ⊥-section whose flange and web are both infinite.
Publisher
Cambridge University Press (CUP)
Reference5 articles.
1. Kötter F. , Sitzungsberichte der Preuss. Akad. der Wiss. (1908), 935–955.
2. Über die Torsion prismatischer Stäbe-von polygonalem Querschnitt
3. Greenhill , Applications of elliptic functions, 286.
Cited by
5 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献