Abstract
It was shown by Sas (1) that, if K is a plane convex body, then it is possible to inscribe in K a convex n-gon occupying no less a fraction of its area than the regular n-gon occupies in its circumscribing circle. It is the object of this note to establish the n-dimensional analogue of Sas's result, giving incidentally an independent proof of the plane case. The proof is a simple application of the Steiner method of symmetrization.
Publisher
Cambridge University Press (CUP)
Reference2 articles.
1. Über ein Extremumeigenschaft der Ellipsen;Sas;Compositio Math,1939
2. Theorie der Konvexen Körper
Cited by
36 articles.
订阅此论文施引文献
订阅此论文施引文献,注册后可以免费订阅5篇论文的施引文献,订阅后可以查看论文全部施引文献